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Abstract

Bacterial shape plays a crucial role in their survival and function. The shape
of bacteria is mainly determined by the cell wall, a polymeric envelope pro-
viding structural support and protection to the cell. Interestingly, bacteria
maintain their distinct shape with outstanding precision and its morphology
is highly robust to perturbations of the external conditions. While the pro-
teins involved in the growth of the cell wall have been studied extensively,
how the local properties of the cell envelope direct the growth process to
achieve such precise morphological control remains a puzzle. In this context,
mechanical and geometrical cues have been proposed as potential feedback
mechanisms contributing to robust shape preservation.

The central objective of this thesis is to explore bacterial shell growth
driven by mechanical and geometrical laws. To this end, a specialized sim-
ulation framework is developed. We model the cell wall as a linear elastic
material and shell growth as a stochastic process with rates defined in terms
on the local mechanical or geometrical properties.

Two models of the bacterial shell are implemented. First, a spring-
based model is developed. This model is computationally efficient and pro-
vides a simplified framework to understand cell wall growth. This model
however shows undesired deviations from linear elasticity. This motivated
the development of an alternative model based on finite elements (FEM).
The model introduces localized growth to the classical mechanics finite ele-
ment framework and shows the expected response of linear elastic material.
Both models are integrated into a unified simulation package. The com-
putational package provides a practical and insightful tool to explore cell
envelope growth, thus contributing to the study and the understanding of
bacteria and their remarkable adaptability.

We use the FEM setup to study growth in spherical and rod-shaped ves-
sels. We find that a strain-dependent growth law reduces the roughness of
the surface and surface stresses compared to purely random growth. Fur-
thermore, inspired by the observations in rod-shaped bacteria, we find a
growth law combining strain and curvature information leading to robust
lengthening of the cell with no change in the cell’s radius.

This thesis reinforces the role of strain sensing in shape preservation and
offers valuable insights into the operation of strain-based growth.



Zusammenfassung

Die Form von Bakterien spielt eine entscheidende Rolle für ihr Überleben
und ihre Funktion. Die Form von Bakterien wird hauptsächlich durch die
Zellwand bestimmt. Diese Hülle bestehend aus Polymeren, die der Zelle
mechanische Unterstützung und Schutz bietet. Interessanterweise behal-
ten Bakterien ihre spezifische Form mit herausragender Präzision und ihre
Morphologie ist äußerst robust gegenüber Änderungen in Umweltbedingun-
gen. Die Proteine, die am Wachstum der Zellwand beteiligt sind, sind
viel erforscht. Wie die lokalen Eigenschaften der Zellhülle den Wachstum-
sprozess beinflussen, um eine solch präzise morphologische Kontrolle zu er-
reichen, bleibt jedoch ein Rätsel. In diesem Zusammenhang wurden mecha-
nische und geometrische Signale als potenzielle Rückkopplungsmechanismen
vorgeschlagen.

Das Hauptziel dieser Arbeit ist die Erforschung des bakteriellen Hüllen-
wachstums, das durch mechanische und geometrische Signale gesteuert wird.
Zu diesem Zweck wird ein spezialisiertes Simulationsprogramm entwickelt.
Wir modellieren die Zellwand als ein linear elastisches Material und das
Wachstum der Hülle als stochastischen Prozess mit Raten, die Abhängig
von den lokalen mechanischen und geometrischen Eigenschaften berechnet
werden.

Es werden zwei Modelle der bakteriellen Hülle implementiert. Zunächst
wird ein federbasiertes Modell entwickelt. Dieses Modell ist rechnerisch ef-
fizient und bietet einen vereinfachten Rahmen für das Verständnis des Zell-
wandwachstums. Es weist jedoch Abweichungen von der linearen Elastizität
auf. Dies motivierte die Entwicklung eines alternativen Modells, das auf
finiten Elementen basiert. Das Modell führt lokalisiertes Wachstum ein und
die Hülle verhält sich wie ein linear elastisches Material. Beide Modelle wer-
den in ein einheitliches Simulationspaket integriert. Die Simulationssoftware
bietet ein praktisches und aufschlussreiches Werkzeug zur Erforschung des
Zellhüllenwachstums, und trägt damit zum Verständnis von Bakterien und
ihrer bemerkenswerten Anpassungsfähigkeit bei.

Wir verwenden die FEM-Simulation, um das Wachstum in kugelförmigen
und stäbchenförmigen Gefäßen zu modelliern. Wir stellen fest, dass ein
dehnungsabhängiges Wachstumsgesetz die Rauheit der Oberfläche im Ver-
gleich zum rein zufälligen Wachstum reduziert. Außerdem finden wir, in-
spiriert von den Beobachtungen bei stäbchenförmigen Bakterien, ein Wach-
stumsgesetz, das Dehnungs- und Krümmungsinformationen kombiniert und
zu einer Verlängerung der Zelle führt, ohne dass sich der Radius der Zelle
ändert. Diese Arbeit unterstreicht die Rolle der Dehnungserfassung bei
der Formerhaltung und bietet wertvolle Einblicke in die Funktionsweise von
dehnungsbasiertem Wachstum.
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Chapter 1

Introduction

Figure 1.0.1: Shapes and sizes of bacteria. Reproduced from [8]

1.1 Shapes of bacteria

Bacteria can be found in a large variety of shapes and sizes, as shown in
Fig.1.0.1. These shapes are not accidental, but of high biological impor-
tance for the bacteria. The cell shape impacts a bacteria’s ability to survive
in a multitude of ways: Nutrient access, cell division and segregation, at-
tachment to surfaces, passive dispersal, active motility, polar differentiation,
the need to escape predators, and the advantages of cellular differentiation
[8]. Although there are many possibilities, bacteria select their shape con-
sistently from generation to generation, and morphological changes can be
traced through evolutionary lines. Some cells even make adjustments to
their shape in response to changing conditions. These factors indicate that
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Figure 1.2.1: Gram-positive and gram-negative cell envelopes.
CAP = covalently attached protein; IMP, integral membrane protein; LP, lipopro-
tein; LPS, lipopolysaccharide; LTA, lipoteichoic acid; OMP, outer membrane pro-
tein; WTA, wall teichoic acid. Reproduced from [13]

the geometrical shape of bacteria is a selectable trait that aids in survival
[6].

1.2 Cell wall

The bacterial shape is determined by the peptidoglycan (PG) layer, which
is composed of glycan chains connected by short peptides. The mechanical
properties of cell walls are different for Gram-positive and Gram-negative
bacteria. Cell envelopes of Gram-positive and Gram-negative bacteria are
shown in Fig. 1.2.1.

Gram-negative bacteria have a complex cell envelope consisting of the
outer membrane layer, the PG layer and the inner membrane layer [13].
The outer membrane is a lipid bilayer. The PG cell wall is made up of
repeating units of the disaccharide N-acetyl glucosamine-N-actyl muramic
acid, which are cross-linked by pentapeptide side chains [10]. For rod-like
bacteria, the gylcan chains are organized in hoops perpendicular to the
longitudinal direction, which are linked by peptides [9]. The inner membrane
layer is a phospholipid bilayer.

Gram-positive bacteria by contrast have no outer layer but often live in
much harsher environments and have a PG cell wall that is many times
thicker compared to gram-negative bacteria. The PG structure is rein-
forced by anionic polymers like lipoteichoic acid (LTA) and wall teichoic
acid (WTA). Attached on the surface are proteins, the composition of which
can depend on the environment and growth conditions [5].
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1.3 Elastic deformations

The increased thickness of the PG layer in gram-positive bacteria allows it
to withstand high pressures. These turgor pressures are caused by a higher
solute concentration in the cell. This produces an osmotic pressure, which
causes solution to flow into the cell [7]. This inflates the cell, which is only
being contained by the cell wall. Tab. 1.3.1 shows PG layer thicknesses and
turgor pressures observed in E. coli and B. subtilis, which are Gram-negative
and Gram-positive bacteria, respectively. The peptigoglycan cell wall can
be modeled as an elastic sheet subject to elastic and plastic deformations
[19], [20], [23].

Peptidoglycan layer thickness Turgor pressure

Escherichia coli 1.5–6.5 nm [10] 0.3 and 2–3 atm [14], [3]
Bacillus subtilis 30 nm [18] 20 atm [4]

Table 1.3.1: Peptidoglycan layer thickness and turgor pressure of E. coli
and B. subtilis. Adapted from [19].

1.4 Plastic deformations and growth

The cell wall is constantly remodeled by a process that involves a multitude
of proteins, which are depicted in Fig. 1.4.1. PG synthases assemble the
PG network from PG monomers. (A), (B) Glycosyltransferases polymerize
PG monomers into strands, which are cross-linked by (A), (C) Transpepti-
dases. (D) Inner membrane associated proteins synthesize PG monomers;
(E) Flippases flip the monomers across the inner membrane. (F) Scaffold-
ing proteins bind multiple synthases and inner membrane proteins, thereby
localizing growth.

A variety of hydrolases on the other hand modify existing PG structures
by breaking specific bonds. (G) Endopeptidase can break cross-links and
peptide links, the latter of which can also be broken at different positions by
(H) Carboxypeptidase. (I) Glucosidase breaks glycan strands, (J) Amidase
removes entire peptide stems [25].

The proteins involved in the growth process are orchestrated in a way
that leads to robust shape preservation in bacteria. E. coli cells elongate
while maintaining their radius with high precision. Experiments have shown
that cells recover their characteristic shape through growth even if the shape
is disturbed in some way, for example by bending [19].

Although the mechanics of cell wall synthesis have been well studied, the
feedback between cell properties and growth is not well understood. Three
theories of shape preservation have been put forward:
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Figure 1.4.1: Simplified schematic depiction of proteins involved in pep-
toglycan remodeling. Reproduced from [25].

2) A protein related to the peptidoglycan elongation machinery pro-
vides a geometry sensing mechanism [21].

3) A strain sensing mechanism that allows for the preferred inser-
tion of new glycan strains at regions of high strain [19].

1.5 Overview of the thesis

I wrote computational models to study bacterial cell growth. The simulation
package was used to explore growth laws resulting in robust cell shape. I
studied spherical and rod-shaped bacteria and tested various strain- and
curvature-sensing mechanisms that leads to controlled growth of micro and
macroscale properties.

I employed two different simulation strategies to model the mechanical
properties of the bacterial cell walls:

1. Spring based model (Section 2). The cell is described by a triangulated
mesh connected by springs. This model maps to a linear elastic continuum
for small strains. Growth of the cell envelope is modeled by enlarging the
rest lengths of the springs.

2. Finite element based model (Section 3). In this model the surface
is described by a triangulated surface. The constitutive equations of lin-
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ear elasticity are solved for each triangular element following a static finite
element approximation. This model leverages the COMSOL Multiphysics
package which is wrapped in the core Python code of the simulation. The
growth of the shell is implemented by modifying the dimensions of the tri-
angles.
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Chapter 2

Spring based model

I present a physical model that captures the mechanical properties of the
bacterial shell and its response to the internal turgor pressure. Growth of
the shell is modeled as a stochastic process with rates dependent on strain
and curvature.

Figure 2.0.1: Growth model of the bacterial shell based on a spring
network.
a, The bacterial shell modeled as a surface with linear elastic material. The surface
is discretized into a triangle mesh. b, Each of the edges in the triangulated surface
represents a Hookean spring. The elastic properties of this network map to a linear
elastic material [2]. c, Local growth is realized by increasing the rest lengths of
springs.

The mechanics of the bacterial shell are modeled as linear elastic shell
with finite thickness. The geometry of the bacterium is geometry is dis-
cretized by triangulation, yielding a triangle mesh of the surface. The phys-
ical model is built upon the mesh geometry by assigning physical properties
to mesh attributes. In the spring based model, each of the edges in the
mesh represents a spring. The triangles are subject to an outwards pointing
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pressure force. Local growth is realized by selectively increasing rest lengths
of springs in the network. This is illustrated in Fig. 2.0.1. The following
chapters present the theoretical basis of the physical model and the stochas-
tic growth simulations. Lastly, I present my results from growth simulations
with spherical and rod-shaped bacterial shells.

2.1 Theoretical background

In this chapter I present the theoretical basis for the spring based physical
model of the bacterial shell and the stochastic growth simulations.

2.1.1 Modeling the surface as a network of springs

I model the elastic properties of the shell surface with a network of springs.
Each of the edges in the triangulation mesh represents a harmonic spring
with stiffness ks and rest length l0,e. I use Hooke’s law to compute the energy
of the springs (Eq. 2.1.1). I model the bending stiffness of the shell as an
energetic cost to the bending of neighboring mesh triangles. The spring
energy and the bending energy capture the mechanical properties of the
bacterial shell. The effect of turgor pressure is modeled as normal forces on
the mesh triangles. The complete energy equation reads

E =

edges∑
e

ks
2
(le − l0,e)

2

︸ ︷︷ ︸
Spring energy

+

Bending energy︷ ︸︸ ︷
triangles∑
{i,j}

(adjacent)

kbending(1− n⃗i · n⃗j) −pV︸ ︷︷ ︸
Pressure energy

, (2.1.1)

where kbending is the bending stiffness, {i, j} are adjacent triangles and n⃗i,
n⃗j are their normal vectors, p is the turgor pressure and V is the volume
enclosed by the surface. The resulting forces are illustrated schematically
in Fig. 2.1.1. Equation 2.1.1 captures the mechanical properties of the
bacterial shell surface and its response to the turgor pressure.

The spring stiffness ksand bending stiffness kbending can be mapped to
properties of a continuous linear elastic surface with a 2D Young’s modulus
Y and bending rigidity κb

Y =
2√
3
ks, (2.1.2)

κb =

√
3

2
kb, (2.1.3)

The continuous bending rigidity κb can also be computed from the 3D
Young’s modulus of the surface E and the thickness of the surface t as
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Figure 2.1.1: Spring energy and bending energy.
a, Springs in the network are modeled as harmonic springs with stiffness ks. Each
spring has its independent rest length l0,e. b, The bending energy of two adjacent
triangles is proportional to 1 − cos(θ), where θ is the angle between their normal
vectors n⃗i, n⃗j . c, The pressure force on a given triangle is proportional to its area.

κb =
Et3

12(1− ν)
, (2.1.4)

where ν = 1/3 [2] is the Poisson’s ratio [1]. This allows the mapping
from a given linear elastic surface with Young’s modulus E and thickness t

E, t → ks, kbending (2.1.5)

to a spring network with spring stiffness ks, and bending stiffness kbending.
In this thesis, I consider the case of Gram-negative bacteria and assume
a Youngs’s modulus of 50MPa and a thickness of 2 nm [19]. The growth
dynamics are assumed to be slow compared to the equilibration of the sur-
face, the surface is modeled in equilibrium. The equilibrium configuration
of the surface is found in the minimum of the surface energy 2.1.1. The im-
plemented software package applies a conjugate gradient algorithm to this
problem.

2.1.2 Modeling the growth dynamics

I realize local growth by selectively increasing rest lengths of springs. At
time t, each edge can be transformed from l0,e to l0,e + δl with a rate λ(r⃗),
where r⃗ are local surface properties and the unit of λ is t−1, so that

l0,e
ke−→ l0,e + δl. (2.1.6)

I can write the the master equation for a given edge as

∂tpe(l0,e + δl, t) = λepe(l0,e, t). (2.1.7)
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A sample from the solution of the master equation is generated by simulating
the time evolution of the edges as a discrete stochastic process. The Gillespie
algorithm generates time steps and selects reactions based on the Monte
Carlo Method. Two random numbers r1, r2 ϵ [0, 1] are generated, from
which the time step τ is computed as

τ =
1∑
e λe

log

(
1

r1

)
(2.1.8)

and the selected growth reaction e is computed as

e = smallest integer for which

t∑
e′=0

λe′ > r2
∑
e

λe. (2.1.9)

The selected reaction transforms the edge e from le,0 → le,0 + δl, where δl
is a fraction of the mean initial edge length as δl = ϵ · ⟨le,0⟩ with 0 < ϵ ≤ 1.
Let the mapping from local properties to growth reaction rate

f(r⃗) = λ (2.1.10)

be called a growth rule. Negative growth reaction rates are capped to zero.
The growth rule determines the growth reaction rates and the growth trajec-
tory. In the simulations the growth reaction rate is always multiplied with
an associated reaction area before applying the Gillespie algorithm. The re-
action area occupied by a given edge in the mesh is the area spanned by its
two vertices and the two neighboring triangle centroids. This ensures that
the reaction rates per surface area are independent of the size distribution
of the mesh triangles.

11



2.2 Computational methods

Figure 2.2.1: Simulation process loop.
The growth simulation involves a loop that consists of 5 steps.
(I) Compute curvature and stresses of the current configuration.
(II) The growth rule g(σ, k) computes growth reaction rates of edges in the

mesh.
(III) One edge is selected with the Gillespie algorithm.
(IV) The rest length of the selected edge is grown.
(V) The new current configuration is computed from the rest lengths and

physical parameters. The previous configuration is used as initial guess
for the minimum.
→ Go to (I).

The simulation package is based on the energy function and Gillespie
algorithm introduced in the previous section. Python was chosen as the
main programming language, though I implemented some modules in C++
and Java for performance and compatibility reasons. I was responsible for
the design and implementation of the main code base. I also wrote the
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documentation and managed the git of the project. Cesar Lopez Pastrana
implemented a vertex-based stress computation, a kinetic Monte Carlo rou-
tine and provided a program for the generation of the initial mesh geometry.
Julius Lehmann was responsible for implementing a fast and reliable way
to compute the curvature and also worked on various improvements of the
package, including the documentation.

2.2.1 Design principles

The software package is divided into modules with each module being re-
sponsible for a single task: loading meshes, storing shell data, computing
the energy and gradient, minimization, computing curvature, computing
stresses, logging data and data output. For a full list of modules see Tab.
A.0.1. This allowed us to extend the functionality of the package with new
modules and substitute one module for another, for example when imple-
menting faster energy and gradient computations (see B), and the finite
element based model and COMSOL interface. All class interfaces abstract
away from the implementational details and are tailored to their application
in the context of the growth simulation. I kept the class hierarchies flat in
order to avoid complex inheritance patterns. Class relationships are imple-
mented through composition instead of relying on inheritance, making use
of dependency injection. For an overview over the class relationships in the
program see Fig. A.0.1 in the appendix.

2.2.2 Notable features

The package is PEP8 compliant [32], all files are well documented and type
hints are used throughout the package.

The package offers implementations of two different physical models of
the shell surface. In addition to the spring based model, a finite element
based model implemented on the basis of COMSOL Multiphysics (see 3.1)
is included.

I implemented a custom C++ extension with Cython [29] which reduced
the computational time by over 160 times (see B).

All observables of interest related to the state of the shell such as volume,
stresses and surface roughness are automatically logged to the Tensorboard
visualization toolkit [33] during growth. This allowed me to track metrics
and visualize the 3D geometry during growth simulations (see Fig. A.0.2).

All logged data is combined into a single pandas DataFrame and ex-
ported as Pickle and JSON file. The data output also includes a copy of
the shell state in the Pickle file format, which can be used to continue the
simulation. A zipped folder with .OBJ files for OVITO [34] or Cinema 4D
[27] is exported for visualization and rendering.
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2.2.3 Simulation process flow

The execution of the simulation can be divided into two stages. In the ini-
tialization stage, a triangulated mesh of the initial, unpressurized bacterial
shell geometry is loaded into the simulation. The pressurized configura-
tion is found with a conjugate gradient algorithm implemented in the SciPy
package [26]. This concludes the first stage.

The growth stage consists of an iterative process that computes rates
from local properties, selects an edge to grow with the Gillespie algorithm
and then minimizes the energy to find the new current configuration. The
process is illustrated in Fig. 2.2.1. Local properties are computed from the
current configuration of the bacterial shell. A growth rule computes the
growth reaction rate for each edge based on the curvatures and stresses /
strains. An implementation of the Gillespie algorithm selects a the growth
reaction of an edge. The rest length of the selected edge is grown and the
energy is minimized to find a new configuration. The minimization routine
repeatedly calls the energy and gradient computation functions. These func-
tions represent a bottleneck in the computational time and are implemented
in Cython and compiled to C++ code.
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2.3 Results and discussion

I first compare the pressurization behavior expected from linear elasticity
theory with the response of a spherical shell in the spring model and discuss
the differences that I observed. I then show that a spherical and rod-shaped
bacterial shells can benefit from strain cues in their growth. I finally present
the limitations of the spring based model.

2.3.1 Spherical bacterial shell under turgor pressure

This chapter gives an overview over the expected pressurization behavior
from linear elasticity. It will serve as a reference in the characterisation of
the behavior of the bacterial shell under pressure in the spring based model.
A sphere with a linear elastic surface material and radius r0 is pressurized
to pressure p. The expected surface stress is

⟨σθθ⟩ = ⟨σϕϕ⟩ =
pr0
2

. (2.3.1)

The stress-strain relations for a linear elastic material are

⟨εϕϕ⟩ =
1

Et
(⟨σϕϕ⟩ − ⟨σθθ⟩ν) (2.3.2)

and the surface strain is

⟨εϕϕ⟩ =
r − r0
r0

, (2.3.3)

where r is the pressurized radius. Substituting equations 2.3.1 and 2.3.3
into equation 2.3.2 yields

r = r0(1 +
pr0
2Et

(1− ν)), (2.3.4)

which relates the pressurized radius r to the material properties, the unde-
formed radius r0 and the pressure p.

I next explored the relation of pressurized radius r and pressure p in
simulation. The result is presented in Fig. 2.3.1a. The spring network
properties map to a linear elastic surface for small pressures, but large pres-
sures produce non-linear behavior. A critical pressure pcrit exists beyond
which no energy minimum exists.

The behavior can be understood by considering the balance between the
spring forces and the pressure forces. The spring forces scale linearly with
the radius, while the pressure forces scale quadratically with the radius.
The effect of the pressure is limited to a shift in the energy minimum for
small pressures, but is unconfined for large pressures. To understand and
quantify the behavior I set up a toy model with a simplified energy function.
Let the only allowed change to the shell be a scaling in size that preserves
the shape, as is expected for the pressurisation of a spherical body with
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Figure 2.3.1: Spherical shell toy model and phase space.
a, Simulated pressurization of spherical shell with r0=100 nm, E = 50pNnm−2

and t=2nm (blue). Expected response from linear elasticity (eq. 2.3.4) in black.
Toy model pressurization behavior in orange. Critical pressure pcrit indicated with
vertical grey line. b, Predicted disallowed region in phase space where no energy
minima exist. The allowed region is defined by p

E < M t
r0
, M ≈ 0.78 for the given

spherical mesh. This imposes both a limit in the allowed pressures and a limit in
growing the undeformed radius r0.

isotropic material properties. The volume can be written in terms of the
pressurized radius r as V ≈ 4

3πr
3.
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The scaling effects the radius r and edge lengths as

r = c · r0, (2.3.5)

and

le = c · le,0 (2.3.6)

where c is the factor by which the shell is scaled. Angles are preserved, which
results in a constant bending energy. This permits the energy function to
be written as a function of the scaling factor

E(c) =

edges∑
e

ks
2
l20,e(c− 1)2 − p

4

3
πr30c

3 + const., (2.3.7)

which can be used to find the pressurized radius where the energy is mini-
mized. The derivative of the energy with respect to the scaling factor c

dE(c)

dc
= ks

edges∑
e

l20,e(c− 1)− p4πr30c
2 !
= 0 (2.3.8)

yields the energy minimum. The solution for c is a real number only if the
relation

ks
∑

e l
2
0,e

p4πr30
> 4 (2.3.9)

holds. Substituting with Young’s modulus E and thickness t as ks =
√
3
2 Et,

gives
p

E
< M

t

r0
=

√
3

2π

∑
e l

2
0,e

r20

t

r0
, (2.3.10)

where the factor M depends on the size distribution of rest lengths l0,e in
relation to the radius of the undeformed sphere. M depends on the triangu-
lation procedure of the shell surface. An energy minimum only exists if the
relation 2.3.10 holds true.

Plotting the solution for c = r/r0 in Fig. 2.3.1a, I observed good agree-
ment with the data obtained from the simulation. Inequation 2.3.10 revealed
a disallowed region in phase space where no energy minimum exists, shown
in Fig. 2.3.1b. This region is approached with increasing pressure p and
by growing undeformed radius r0. As the disallowed region is approached,
hyperelastic behavior emerges. These findings highlight the importance of
carefully selecting initial parameters to stay in a well-behaved region of phase
space.
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2.3.2 Strain-based growth of the spherical bacterial shell

I quantified the shape of the spherical shell with the set of goals and corre-
sponding metrics.

Goal Metric

1. Increasing the size of the shell Volume V
2. Conserving the spherical shape of the shell Asphericity b
3. Conserving the smoothness of the surface Roughness R

Table 2.3.1: Objectives for growing the spherical bacterial shell.

The volume served as an indicator of cell size. Fig. 2.3.2 shows a
schematic view of shape deviations and how they score on the shape mea-
sures. Small-scale deviations were quantified with the roughness measure
R. Large-scale deviations were quantified with the asphericity measure b.
The asphericity of a three-dimensional shape is computed by comparing the

Figure 2.3.2: Schematic view of shape deviations from spherical
a, Low asphericity, high roughness.
b, Moderate asphericity, moderate roughness.
c, High asphericity, low roughness

principal moments λx, λy and λz as

b = λ2
z −

1

2
(λ2

x + λy) (2.3.11)

of the gyration tensor Smn

Smn =
1

N

N∑
i=0

r(i)m r(i)n , (2.3.12)

where rim is the mth component of the position vector of the ith vertex [17].
The roughness R of the surface can be measured by comparing the angles
between adjacent triangles on the shell surface

R = 1−
Σ<αβ>

n̂α·n̂β

Aα+Aβ

Σ<αβ>
1

Aα+Aβ

, (2.3.13)
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where α and β are adjacent triangles. n̂i and Ai are the unit normal vector
and the surface area of the triangle i, respectively. This measure of roughness
was developed by Julius Lehmann and Cesar Lopez Pastrana.

To test the hypothesis that mechanical strain sensing could aid in cell
shape regulation in bacterial shells [24], I set up a simulation experiment
with a spherical shell. Before testing strain dependent growth, I simulated a
growth trajectory where I assumed no interaction between the incorporation
of material and local properties. I extracted geometric observables of the
shell with the roughness and asphericity measures. The constant per area
growth reaction rates produced a moderate size increase and conserved the
spherical shape, however a high surface roughness emerged as a result of
the random incorporation of material (Fig. 2.3.3). I concluded that the
growth without surface property interaction was not sufficient in conserving
the shape of the bacterial shell in the spring based model simulation.

I next asked whether strain dependent growth could reduce the rough-
ness. The strain of a given edge e is

εe = (le − le,0)/le,0, (2.3.14)

where le is the deformed length of the edge and le,0 is the corresponding
rest length. I modeled strain dependent growth by adjusting the growth
reaction rates as λe = −λ0 + λ1εe, where λ0, λ1 are constants and λ0 =
λ1⟨εe⟩e. I reasoned that the inverse relationship between rest length and
strain could stabilize the growth through negative feedback. I simulated
the growth evolution of the bacterial shell with the spring based model
until the shell reached a volume of over eight times its initial volume. Fig.
2.3.3 shows the geometry and the time evolution of extracted roughness and
asphericity values. The strain dependent growth conserved the spherical
shape, indicating long-term stability.

In the spring based model of the spherical bacterial shell, strain depen-
dent growth performed better on all objectives.
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No
interaction 

Strain-based
growth

Figure 2.3.3: Spherical shell grown without interation and with strain
sensing.
Initial radius 250 nm, E=50pN/nm2, t=2nm, p=0.3 atm. Growth step ϵ = 1/5.
Scale bar, 1000 nm. a, Initial geometry, geometry of shell grown without interaction
and geometry of shell grown with strain sensing. Rendered with [27]. b, Roughness
measure of the surface. The surface roughness of the shell grown without interaction
increases sharply. The roughness of the surface is nearly unchanged for the shell
grown with strain-based rates. c, Asphericity of the shell. The asphericity is very
low for both growth modes throughout the growth process, which indicates a nearly
spherical shape.

2.3.3 Growing the rod-shaped bacterial shell

My simulation results of the spherical shell indicate that strain dependent
growth reaction rates can facilitate stable growth. I repeated the previ-
ous simulation experiment with an initial rod-shaped geometry, anticipat-
ing comparable results. Before reporting on the simulation results, I revisit
the shape preservation objectives and adjust them for the rod-shaped shell
(Tab. 2.3.2).

To extract the length, radius and bending angles from the geometry I
used a slicing approach, shown in Fig, 2.3.4.
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Goal Metric

1. Increasing the length of the shell Length of center line L
2. Conserving the radius of the shell Mean center line distances r
2. Conserving the bending angle of the shell Center line piece angles φ
3. Conserving the smoothness of the surface Roughness R

Table 2.3.2: Objectives in growing the spherical bacterial shell.

Slice

Radius
Slice centers

Length
Angle

Figure 2.3.4: Computing length, radius and bending angle of the rod-
shaped shell.
The shell is divided into slices (green) along its length. At initialization, each
vertex is assigned a slice. The gravitational centers of the slices (red dots) can be
computed at any point in the simulation. Radius, length and bending angles are
computed from the line connecting the slice centers.

The results from the simulation experiment with the rod-shaped shell are
presented in 2.3.5. I was able to replicate the previously observed roughness
reduction in the rod-shaped shell. The resulting geometry experienced a
significant increase in radius, however.

In a pressurized cylindrical shell with isotropic material properties, the
stress in the circumferential direction is doubled compared to the longitudi-
nal direction. This results in higher growth reaction rates for edges aligned
in the circumferential direction, amplifying the radius.

These results indicate that edge directions can be discriminated via
strains. In the spring based model, the possible growth directions are re-
duced to the directions that the edges are already aligned with. I next
wondered whether the direction of edges in the triangulated mesh could in-
fluence the increase in radius in the spring based model. I compared two
meshes with opposing edge alignments but identical geometry. I set up a
deterministic growth experiment where I grew the edges with the best lon-
gitudinal alignment simultaneously and compared the radius gain between
the meshes. Notably, their responses were contradictory: The shell with the
underlying longitudinally aligned mesh contracted in radius, while the shell
with the underlying circumferentially aligned mesh expanded in radius (Fig.
2.3.6). The spring mesh maps to isotropic material for small strains as long
as triangles in the mesh are equilateral. With directional growth, this is no
longer the case. Depending on the orientation of the mesh, triangles get
deformed in a different way which results in the distinct outcomes observed.
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Strain
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growth

No
interaction 

Figure 2.3.5: Growth without interaction vs. with strain sensing in the
rod-shaped bacterial shell.
r0 = 200 nm, L0 = 2000 nm, E=50pN/nm2, t=2nm, p=0.3 atm. Growth step
ϵ = 1/5. Scale bar, 1000 nm. a, Initial geometry, geometry of the shell grown
without interaction and with strain-based rates. . Rendered with [27]. b, The
radius increase is more pronounced in the shell grown with strain-based rates. c,
Time evolution of length. d, Surface roughness. The surface roughness in the
randomly grown shell increases rapidly. The roughness of the shell grown with
strain-based rates is low and consistent. e, Bending angle. The bending angle of
the randomly grown cylinder reaches a value between 6◦ and 8◦, (panel a). The
cylinder grown with strain rates has a slight bend of 2◦ to 4◦, however this is not
visible by eye (panel a).

2.4 Limitations of the spring based model

The spring based model was useful in exploring the response of the spher-
ical shell to strain-based growth. However, it shows hyperelastic responses
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c d

a

b

Figure 2.3.6: Deterministic longitudinal growth in longitudinal and cir-
cumferential aligned meshes.
a, b Initial and grown geometries of shells with longitudinally and circumferentially
aligned meshes. L0=2000 nm, r0 =200 nm, 300 vertices. E =50pN/nm2, t =2nm,
p=0.3 atm. Scale bar, 1000 nm. Rendered with [27]. b, Relative change in radius.
c, Relative change in length.

to large strains. I showed that some properties of the surface do not stay
isotropic in the context of growth. Another drawback of the spring model
is that topological defects on the surface in the form of vertices with co-
ordination numbers ̸= 6 can give rise to high stress points on the surface
[22].

These limitations could be circumvented with a variety of approaches.
As long as initial parameters are chosen with care, the hyperelastic behavior
can be avoided. The triangulation algorithm could be adjusted to produce
meshes without a preferred direction. Another approach is a different phys-
ical model of the bacterial shell that is based on the finite element method,
which I present in the next chapter.
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Chapter 3

Finite element based model

In this chapter I present the finite element based model of the bacterial
shell surface. The idea to implement a physical model of the shell based
on the finite element method was initially suggested to me by Paul Nemec.
In the following chapters I will introduce the finite element method as a
computational technique in general and then present the workflow that I
developed for the growth simulations, before finally reporting on my results.

3.1 The finite element method as a computational
technique

Allen F. Bower’s book ’Applied Mechanics of Solids’ [11] has served me as an
accessible introduction to the finite element method and helped me revisit
many concepts from continuum mechanics. The following section is based
on chapter 7.

The finite element method is in general a technique for solving partial
differential equations. It can be used to solve problems of solid mechanics,
fluid mechanics, heat transfer, and electromagnetics. A typical use case of
this analysis is to calculate the stresses, strains and displacements of a solid
body in equilibrium under outside forces.

Assumptions:
The focus of application in the context of modelling the bacterial shell sur-
face is on static linear elastic analysis in solid mechanics. The surface thick-
ness is assumed to be small so that the plane stress condition holds. We are
solving the system for the equilibrium solution, which imposes that the sum
of forces be zero ΣF⃗ = 0.

Interpolation:
The undeformed geometry of the shell is defined by a mesh, which divides
the surface into a number of elements. The displacement is computed for
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the vertex nodes in the mesh. The solution for any point on the surface is
computed by linear interpolation between the nearest three vertices.

Strains are computed from the displacement field by differentiation, and
once known, can be used to compute stresses on the surface. We compute
the potential energy of the mesh as the sum of the strain energy and a
boundary force term and minimize it to obtain the displacement vector.

3.1.1 Stress-strain relations

We can write the strain for a given element as

ε⃗ = [B]u⃗element =

 ε11
ε22
2ε12

 =


∂Na
∂x1

0 ∂Nb
∂x1

0 ∂Nc
∂x1

0

0 ∂Na
∂x2

0 ∂Nb
∂x2

0 ∂Nc
∂x2

∂Na
∂x1

∂Na
∂x2

∂Nb
∂x1

∂Nb
∂x2

∂Nc
∂x1

∂Nc
∂x2




u
(a)
1

u
(a)
2

u
(b)
1

u
(b)
2

u
(c)
1

u
(c)
2


(3.1.1)

where Na, Nb and Nc are linear element interpolation functions which are 1

at the corner a, b and c, respectively, and 0 at the other corners. u
(a)
i is the

ith component of the displacement vector of vertex a. We can conveniently
write the strain tensor in Voigt notation as a a vector with three entries,
because ε12 = ε21. This allows us to write the strain-deformation relation
as a vector equation.

For any linear elastic material stress σ and strain ε are related by gen-
eralized Hooke’s law for an isotropic solid. Assuming plane stress, we can
write the stress-strain relation asσ11σ22

σ12

 = [D]

ε11ε22
ε12

 =
E

(1− ν)2

1 ν 0
ν 1 0
0 0 (1− ν)/2

ε11ε22
ε12

 (3.1.2)

with Young’s modulus E and Poisson’s ratio ν, where [D] is the material
property matrix..

3.1.2 Computing the global strain energy

We can write the strain energy density (energy per unit area) as

U =
1

2
ε⃗Tσ⃗ =

1

2
ε⃗T[D]ε⃗. (3.1.3)

Using equation 3.1.1 we can write the strain energy of an element as
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Welement = AelementUelement =
1

2
u⃗Telement(Aelement[B]T[D][B])u⃗element,

(3.1.4)
where Aelement is the area of the given element and 3.1.1 was used. The
stiffness matrix Kelement = (Aelement[B]T[D][B]) is symmetric because the
the material property matrix [D] is also symmetric. We can write the total
strain energy as the sum over all the element strain energies:

W =
∑

elements

Welement =
1

2

∑
elements

u⃗TelementKelementu⃗element (3.1.5)

This equation can be written in matrix form by writing a global displacement
vector u⃗ and the global stiffness matrix K:

W =
1

2
u⃗T[K]u⃗ (3.1.6)

This concludes the computation of strain energy.

3.1.3 Computing the boundary term in the potential energy

This section gives an overview over the procedure to compute the boundary
term in the potential energy. The pressure force acts as a face load on the
triangular elements. Let us denote the pressure force on a given element as

f⃗
(element)
p = pn⃗(element), where p is the pressure and n⃗ is the normal vector
on the given element, pointing outwards. The contribution to the potential
energy from the boundary force on the given element is

Pelement = −
∫
A
f⃗ element
p · u⃗dA, (3.1.7)

where u⃗ is the displacement field. It is assumed that the pressure force is
constant over any one element. This allows us to write

Pelement = −f⃗ element
p ·

∫
A
u⃗dA (3.1.8)

Computing the integral is trivial because the deformations u⃗ vary linearly
over any single element and can be written as a linear combination of the
displacements at the three corners u⃗a, u⃗b and u⃗c

u⃗ = u⃗aNa(v, w) + u⃗bNb(v, w) + u⃗cNc(v, w), (3.1.9)

Where v and w are local 2D coordinates on the element surface. The integral
then becomes ∫

A
u⃗dA = βau⃗a + βbu⃗b + βcu⃗c, (3.1.10)
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where βi =
∫
ANi(v, w)dA are constants, which account for the size of the

triangle. The boundary force contribution to the potential energy of the
triangular element can be written as

Pelement = −βaf⃗p · u⃗a − βbf⃗p · u⃗b − βcf⃗p · u⃗c. (3.1.11)

We can rewrite this as a vector product of the residual force vector r⃗element =
[βaf⃗p, βbf⃗p, βcf⃗p]

T and the deformations u⃗element = [u⃗a, u⃗b, u⃗c]
T as

Pelement = −r⃗element · u⃗element (3.1.12)

The total boundary force contribution to the potential energy is the sum of
all boundary terms for all the elements

P = −
∑

elements

r⃗element · u⃗element, (3.1.13)

or written in terms of the global displacement vector u⃗

P = −r⃗ · u⃗, (3.1.14)

with the global residual force vector r⃗. This concludes the potential energy
computation

V = W + P =
1

2
u⃗T[K]u⃗− r⃗ · u⃗ (3.1.15)

This system of linear equations can be solved for the displacements with
gaussian elimination, Cholesky factorization or conjugate gradient algo-
rithms.

I developed a workflow based on the finite element software COMSOL
Multiphysics for the computations, which I present in the next chapter.

3.2 Computational methods

This chapter explains the workflow that I developed based on COMSOL
Multiphysics for the bacterial shell growth simulations. A major challenge
was the correct implementation of local growth, which I solved by introduc-
ing strains to grown elements.

3.2.1 Initial Strains in COMSOL

The procedure I developed is based on the concept of initial strains in COM-
SOL. The COMSOL user guide [28] suggests a workflow involving strains
to alter the elastic rest state and size of simulated objects. I summarize
the example from the COMSOL user guide before presenting my adapted
workflow.
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Figure 3.2.1: Bracket, and pin with an initial strain set.
a, Initial, undeformed state. An initial strain ε0 = L0−L

L0
is set for the pin along

its symmetry axis. This changed the elastic rest state of the pin. The initial
pin length L0 = 215mm is different from its current or rest length L = 214mm.
b, Deformation and stresses. The pin has contracted towards its rest length and
deformed the bracket. Colors indicate stresses.

The guide presents us with a geometry consisting of two objects, a pin
and a bracket to hold the pin in place (Fig. 3.2.1a). The pin fits exactly
in the bracket. The reader is presented with a question: What if the pin
is slightly shorter than the width of the bracket? This could occur from a
manufacturing defect or a thermal deformation, for example. How would
the resulting stresses and deformations be computed? The pin cannot be
shortened directly, because it is constrained by the width of the bracket.
The solution lies in the way the initial configuration is set up. Instead of
shortening the pin, the same initial geometry is used, but it is assumed that
the pin has been extended to fit into the bracket. This implies a strain

ε0 =
L0 − L

L0
(3.2.1)

in the pin, with L the length of the pin in its undeformed state and L0 the
bracket width. In COMSOL this strain is called the initial strain. I adopted
this terminology. Internally, this strain is added to the deformation strain
as an offset:

ε⃗ = [B]u⃗element + ε⃗0,element, (3.2.2)

where ε⃗0,element is the initial strain vector [ε11, ε22, ε12]
T of the given

element. Fig. 3.2.1b shows the simulated results. The pin has contracted
and deformed the bracket, inducing stresses. I used a similar approach to
simulate the growth of triangular elements on the shell surface.

3.2.2 Local growth with initial strains

Here I present my workflow for introducing local growth in the finite ele-
ment based model of the bacterial shell. I grew triangular elements via the
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initial strain method outlined above. I adapted the previously presented
workflow for two-dimensional growth transformations and applied an initial
area correction to the pressure force. Let me first present the calculation of
strains for each triangle.

Figure 3.2.2: Triangle in the undeformed and the pressurized configura-
tion.
a, Triangle in the undeformed configuration with undeformed edge lengths Λ0,1,
Λ0,2 and Λ0,3. No strains are present. b, The triangle in the pressurized configu-
ration with deformed edge lengths Λ1, Λ2 and Λ3. Normalized edge vectors n⃗(1),
n⃗(2) and n⃗(3). The strain in this configuration is computed with equations 3.2.3
and 3.2.5.

The strain of a triangle in any deformed configuration was computed
analogously with the pin example as

ε(n⃗(i)) =
Λi − Λi,0

Λi
(3.2.3)

where Λ0,i are the edge lengths of the triangle in the undeformed config-
uration, and Λi, n⃗

(i) are the edge lengths and edge direction unit normal
vectors, respectively. Using the definition of the 2D strain matrix, the strain
in the edge direction can be written as

εdirection(n⃗
(i)) = εkln

(i)
k n

(i)
l , (3.2.4)

which yields the system of linear equations
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2 n

(3)
2 n

(3)
2

 ·

 ε11
2ε12
ε22

 . (3.2.5)

The strain tensor components ε11, ε12 and ε22 were computed by solving
the linear equations. Applied to the bacterial shell, this allowed me to com-
pute the two-dimensional strain for any triangle in any configuration. In my
workflow, three configurations came into play. The pressurized configura-
tion corresponds to the pressurized geometry of the shell. The undeformed
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configuration contains the rest state of each triangle. The initial configura-
tion has no physical equivalent. It was a convenient intermediate step to be
used within COMSOL.

The three configurations are identical at the start of a simulation run.
Once the turgor pressure is applied, triangles in the pressurized configura-
tion expand. When a triangle is transformed by growth, the rest state in
the undeformed configuration is modified. The geometry of the initial con-
figuration is not altered. Instead, the initial strain is applied to the grown
triangle. The effect on the pressurized configuration is computed from the
initial configuration. It should be noted that the pressurized configura-
tion computed in the previous simulation step could be used as the initial
configuration in COMSOL, with its strains applied as initial strains. The
intermediate initial configuration was convenient because it minimizes the
number of elements with an initial strain, which I found to have a significant
impact of the computational time required by the COMSOL solver. I used
the pressurized configuration computed in the previous simulation step as
initial guess for the solution, however.

The undeformed triangle in the finite element based model is analogous
to the rest lengths of springs in the spring based model. As triangles are
two-dimensional objects, the manner in which growth modifies a triangle is
not immediately clear. Two distinct growth modes are possible in general.
Self-similar growth and directed growth.

Let me first introduce self-similar growth. The undeformed area Ai,0 of
a triangle can be computed via Heron’s formula considering the undeformed
edge lengths Λi,0 as

Ai,0 =

√√√√s

3∏
j=1

(s− Λj,0), s =
1

2

3∑
i=1

Λi,0. (3.2.6)

To grow the triangle area isotropically to an area of Ai,0 + δA, each unde-
formed edge length should be multiplied by the same factor. This conserves
the shape of the triangle. Let Ai,0 → Ai,0 + δA and Λi,0 → gΛi,0. Plugging
both in equation 3.2.6 yields

A0 + δA = A0g
2. (3.2.7)

Solving for g gives g =
√

1 + δA/A0. I grew triangles in an isotropic manner
as

Λi,0 → Λi,0

√
1 + δA/Ai,0. (3.2.8)

for an area increase of δA.
In order to achieve growth in a specific direction, I followed the scheme

presented in Fig. 3.2.3.
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Figure 3.2.3: Directed growth of a triangle in a given direction.
Procedure for growing a triangular triangle in a particular direction.

The preferred direction for growth is given ad-hoc only in the pressur-
ized configuration. For directed growth, I used the principal curvature and
principal strain directions as growth directions, which are 3D vectors.

In order to work in the 2D coordinate system of the triangle, I projected
the vector onto the triangle surface corresponding to the pressurized config-
uration (Fig. 3.2.3.I). The shape of the triangle in the pressurized configu-
ration is in general different from the undeformed configuration. To obtain
the correct transformation, I translated the growth direction into the unde-
formed configuration (Fig. 3.2.3.II) by considering the alignments of edges
with the growth direction. In the next step, I rotated the local coordinate
system to align the x-axis with the desired growth direction (Fig. 3.2.3.III).
The new shape of the triangle was computed by transforming x-coordinates
as x → (1 + δA

Ai,0
) · x (Fig. 3.2.3.IV). This allowed me to extract the new

shape of the triangle, which is defined by its three edge lengths. I saved the
new edge lengths in the undeformed configuration and computed the initial
strain with equations 3.2.3 and 3.2.5. The edge lengths Λi,0 fully define the
triangle in the undeformed configuration, because strains are computed with
Eq. 3.2.3, where only the directions in the pressurized configuration n⃗(i) en-
ter (See Fig. 3.2.2), but not directions in the undeformed configuration.
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3.2.3 Initial area correction

To test my implementation of the presented workflow, I designed a simple
simulation experiment. I grew a spherical shell with the initial strains work-

Figure 3.2.4: Initial area correction for a pressurized spherical shell.
The radius r of the shell increased as expected for zero pressure. Doubling the
undeformed edge lengths of all triangles, a doubling in radius was reached (from
r0,initial =500 nm to r0 =1000 nm). The naive approach at p =1atm yielded a
pressurized radius that is smaller than the expected radius from linear elasticity
theory (eq. 2.3.4). I obtained the correct deformations after introducing the inital
area correction (eq. 3.2.10).

flow (Fig. 3.2.4) and observed the increase of the radius. In the absence
of pressure, the measured radius corresponded exactly to the surface area
increase that the shell was subjected to. Once a pressure was applied, the
measured radius contradicted the expected values from linear elasticity the-
ory. I reexamined the pressure force computation in COMSOL in order to
rectify this. It is computed as

f⃗ (i)
p = pAin⃗i, (3.2.9)

where f⃗p is the pressure force on a the triangle i, Ai is the triangle size in
the initial configuration for COMSOL and n⃗i is the unit normal vector on
the triangle. COMSOL computes the pressure force on a given triangle with
the area in the initial configuration, which coincides with the undeformed
configuration in the usual case, but not after applying the initial strains
workflow to a triangle. The physically correct computation would involve
the triangle area in the undeformed configuration instead. I replaced the
pressure p on a given triangle i with a corrected pressure p∗i as

p → p∗i =
Ai

A0,i
p. (3.2.10)
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Using this corrected pressure, the deformations computed by COMSOL
matched the predictions by linear elasticity. The full initial strains workflow
can be summarized in three steps:

(I) A selected triangle is grown (Eq. 3.2.8, Fig 3.2.3).
(II) The initial strains for COMSOL are computed (Eq. 3.2.3, Eq. 3.2.5).
(III) The corrected pressure forces are computed (Eq, 3.2.10).
(IV) COMSOL solves the system.

I used this workflow in all bacterial shell simulations with the finite
element based model.

3.2.4 Simulation process flow

I present the revised process flow for the finite element based model of the
bacterial shell. I adapted the workflow presented in section 2.2.3 to the finite
element based model (Fig. 3.2.5) by substituting edge-based properties with
triangle based properties. The minimization routine was replaced with a
wrapper class for COMSOL.

3.2.5 Technologies

The simulation interacts with COMSOL through a custom wrapper class.
The wrapper class interfaces with COMSOL Client, which runs in the Java
virtual machine, using the MPh library [30]. The Client sends instructions
to the COMSOL Server, which solves the model for deformations. See Fig.
A.0.1 for a full description of the involved classes.
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Figure 3.2.5: Simulation process loop for the finite element based
model.
The growth simulation consists of a loop that consists of 5 steps.
(I) Compute curvature and stresses of the current configuration.
(II) The growth rule g(σ, k) computes growth reaction rates for triangles in the

surface.
(III) One triangle is selected with the Gillespie algorithm.
(IV) The the triangle is grown in the undeformed configuration.
(V) The new current configuration is computed from the rest lengths and phys-

ical parameters. The previous pressurized coordinates are used as initial
guess for the minimum.
→ Go to (I).

3.3 Results and discussion

I repeated my simulation experiments presented in chapter 2.3, modeling the
response of the bacterial shell with the finite element based model. This in-
cludes a characterisation of the pressurization behavior, random and strain-
based growth in the spherical and rod-shaped shell, and deterministic elon-
gation of the rod-shaped shell. The finite element based model allowed me
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to conduct further experiments in the rod-shaped shell, testing a variety of
strain- and curvature-based growth laws. I also tested growth laws for their
potential to reverse bending in rod-shaped bacteria. A significant downside
of the finite element based model is the computational time required by
COMSOL.

3.3.1 Spherical bacterial shell under turgor pressure

The pressurization behavior of the spherical bacterial shell in the finite el-
ement based model (Fig. 3.3.1) is consistent with linear elasticity theory
(Eq. 2.3.4).

Figure 3.3.1: Pressurization of the spherical shell in the finite element
based model.
The radius after pressurization (blue) closely follows the expected result from linear
elasticity theory (eq. 2.3.4). The pressurized radius in the spring based model is
also shown for comparison (orange).

3.3.2 Strain-based growth in the spherical bacterial shell

I extended the objectives for the spherical shell by a measure of mechanical
stability. High surface stresses can indicate a risk for material failure. I mea-
sured the mechanical stability of the shell via the variability of hydrostatic
surface stresses, which is correlated with peak stresses, but not affected by
stochastic noise. The initial geometry of the shell was a sphere with a ra-
dius of 200 nm in the following simulation experiment. A Young’s modulus
of 50 pNnm−2 and thickness of 2 nm was simulated. The pressure was set to
0.3 atm to allow a comparison with the simulations in the spring model. To
test the theory that strain-based growth can act as a sensory cue for robust
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Goal Observable

1. Increasing the size of the shell. Volume
2. Conserving the spherical shape of the shell. Asphericity
3. Conserving the smoothness of the surface. Nearest-neighbor angles
4. Conserving the mechanical stability. Standard deviation of hydrostatic stress

shape regulation in bacterial shells, I repeated the simulation experiment
outlined in section 2.3.2 with the finite element based model, results pre-
sented in Fig. 3.3.2. Notably, no significant change in shape was observed
throughout the simulated growth process, which contradicts results from the
same experiment performed with the spring based model.

Material was not distributed homogeneously on the surface, which re-
sults in increasingly inhomogeneous surface stresses as indicated by the ris-
ing standard deviation of stresses. The inhomogeneity of stresses gives rise
to surface roughness in the spring based model but not in the finite ele-
ment based model. This difference in surface roughness could be due to
the following reasons: 1) The mechanism used (Eq. 3.2.8), introduces less
shear stresses compared to the growth mechanism in the spring based model,
where growth is always directional. This leads to a more homogeneous dis-
tribution of forces on the surface in the finite element based model. 2) The
solving algorithm by COMSOL favors smooth surfaces. 3) The hyperlinear
behaviour for large strains increases out-of-plane deformations in the spring
based model.

The increasing inhomogeneity of stresses in the finite elements based
model of the shell indicate that the mechanical stability of the bacterial
shell would be compromised in the long term. I anticipated that strain-based
growth could reverse this trend and produce homogeneously distributed sur-
face stresses. I computed the hydrostatic strain of triangular elements as

ε
(e)
h =

ε
(e)
11 + ε

(e)
22

2
(3.3.1)

and growth reaction rates as

λ(e) = −λ0 + λ1ε
(e)
h , (3.3.2)

where λ0 = λ1⟨ε(e)h ⟩e|t=0 = const. and λ1 = 1. The constants λj are de-
termined after pressurization and held constant throughout the simulation.
Fig. 3.3.2 shows the geometrical and mechanical properties of the grown bac-
terial shell. Geometrical properties are comparable between growth without
interaction and growth with strain-sensing. However, the variability of sur-
face stresses is much lower for strain-based growth, which results in lower
peak stresses.

To understand the mechanism by which the strain-based growth oper-
ates, let us consider the strains in elements as they and their neighbors
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increase in size. Initially, all elements are of roughly equal size. The el-
ements experience a positive strain ε(not grown) > 0 induced by the turgor
pressure.

A triangle has grown in a random spot. Suddenly, there is a mismatch
between the size of the grown triangle and its neighbors. The effect of the
turgor pressure on the grown triangle is reduced because of the increased
rest lengths Λ(i,0) (See Eq. 3.2.3). The mismatch in size between the grown
triangle and the ungrown triangle neighboring it induces a tensile strain in
the larger triangle and a compressive strain in the smaller triangle. These
strains have a direct effect on the growth reaction rates. The growth reaction
of the grown triangle is now effectively disabled as the strain drops below
the threshold

λ1ε(grown) < λ0, (3.3.3)

resulting in negative growth reaction rates

λ(grown) < 0 → 0, (3.3.4)

which are set to 0. The increased strain in the ungrown neighboring elements

ε(ungrown , not neighbor) < ε(ungrown, neighbor) (3.3.5)

results in faster growth reactions, so

0 < λ(ungrown , not neighbor) < λ(ungrown, neighbor). (3.3.6)

The increase in growth rates around a grown triangle means that the
first triangle represents a nucleation spot which promotes adjacent growth
and leads to an expanding area of grown triangles.

As more triangles grow and grown triangles have more neighbors of equal
size, compressive forces are reduced and strains are somewhat equalized in
the grown triangles.

Extreme increased and decreased surface stresses are a consequence of
mismatches between element sizes. The variability of surface stresses is
therefore also a measure of the variability of element sizes. The time evolu-
tion of surface stresses shows unexpected periodic behavior for strain-based
growth (Fig. 3.3.2c). Five peaks can be observed, which correspond to the
five growth steps of the full shell. What is the source of this periodic pattern
in the strain-based mechanism?

Fig. 3.3.2d shows a representative selection of triangle sizes at times t0,
t2 and t2. Triangle sizes are homogeneous at time t0. As more and more
triangles grow, the variability in size increases. This explains the increase in
the variability of stresses visible in Fig. 3.3.2c from time t0 to time t1. But
why does the variation of surface stresses reduce between times t1 and t2?

The strain-based growth mechanism favors elements which have not yet
grown and and renders already grown elements inactive. Time t1 is reached
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when approximately half of the elements have grown and half of the ele-
ments have not grown. Many elements are mismatched in size compared to
their neighbors, which results a high variability in stresses. However, it is
still unlikely that an element which has grown once will grow again. Con-
sequently, more and more triangles grow for the first time. The majority of
triangles has now grown once.

Time t2 marks a point of maximum homogeneity on the surface, which
reduces surface stresses. The cycle repeats as triangles grow for the second
time. The cyclical behavior therefore arises from the discrete increase in
elements’ sizes.

38



Not grown

Grown once

Grown twice

t2t1t0

No
interaction 

Strain-based
growth

15

10

5

0

-5

-10

σhyd

(pN/nm)

t0

t1

t2

d

Figure 3.3.2: Spherical shell grown without interaction vs. with strain
sensing.
a, Geometry and hydrostatic stresses before and after growth. Stresses are increased
for both growth modes, but peak stress is much higher in the shell grown without
interaction. b, Asphericity is very low for both growth modes, but better and more
stable with strain-based growth. c, Standard deviation of hydrostatic stresses.
Key time points indicated with t0, t1, t2. d, Representative triangle sizes in the
undeformed configuration. At t0, all triangles are equally sized. At t1, half triangles
have grown. At t2, most triangles have grown once.

3.3.3 Strain-based growth in the rod-shaped bacterial shell

I extended the target metrics in growing the rod-shaped bacterial shell by
the standard deviation of hydrostatic stress to account for mechanical sta-
bility. Length of center line and mean center line distances are computed
with the scheme detailed in Fig. 2.3.4. The roughness of the surface is com-
puted with nearest-neighbor angles (Eq. 2.3.13). The geometry of the shell
was a spherocylinder with a length of 2000 nm and a radius of 200 nm in all
following simulation experiments. A Young’s modulus of 50 pNnm−2 and
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Goal Metric

1. Increasing the length of the shell. Length of center line.
2. Conserving the radius of the shell. Mean center line distances.
3. Conserving the smoothness of the surface. Nearest-neighbor angles.
4. Conserving the mechanical stability. std(hydrostatic stress).

thickness of 2 nm was simulated. The pressure was set to 1 atm to explore
higher pressures. These parameters are characteristic of Gram-negative bac-
teria (see 1.3.1).

I next studied the response of the rod-shaped shell to growth without
local surface property interaction. This growth mode increased the shell
radius and surface stresses. The strain-based growth law applied on the
rod-shaped shell mediated uniform incorporation of material as seen in the
spherical shell, which resulted in lower peak surface stresses. However, the
radius of the shell was not conserved. This matches the response of the
rod-shaped shell in the spring model in Fig.2.3.5.
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Figure 3.3.3: Rod-shaped shell grown without interation and with strain
sensing.
a, Geometry and hydrostatic stresses before and after growth. Stresses are in-
creased for both growth modes, but peak stress is much higher in the shell grown
without interaction. b, c, Simulated radius and length increases were very similar
for both growth modes. d, Surface roughness is lowered for the strain based growth
as the edge between cap and shaft is smoothed out. e, The variability of hydro-
static stresses is stable for strain-based growth but increases for growth without
interaction.

3.3.4 Directed growth in the rod-shaped bacterial shell

I next asked whether the rod-shaped shell would show any dependence on
the underlying mesh alignment, as was observed in the spring based model.
I repeated the simulation experiment from Fig. 2.3.6, comparing the growth
response of two rod-shaped bacterial shells with identical geometry but dif-
ferent mesh alignments. Triangles in the shaft of the shell were elongated
along the longitudinal direction with the procedure described in Fig. 3.2.3.
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I observed an increase in radius for both mesh alignment configurations.
(Fig. 3.3.4). This stands in contrast to the response of the rod-shaped shell
in the spring-based model, where the responses were qualitatively distinct.
These results indicate that the response of the bacterial shell to growth in
the finite element based model is isotropic and largely independent of the
structure of the underlying triangulation mesh.

The observed increase in radius serves as lower bound for radius conser-
vation with purely increasing growth laws in the finite element based model.

c d

a

b

Figure 3.3.4: Deterministic growth of the rod-shaped bacterial shell in
the longitudinally aligned and the circumferentially aligned mesh
a, b, Geometry change for longitudinal growth . c, d, Radius increase and length
change for longitudinal growth.

3.3.5 Mechanical and geometric cues for directional and po-
sitional sensing

The anisotropicity of the cell wall and the microscopic details of the cell
wall synthesis machinery [16], [15], [12] are not part of my model. Radius
conservation in the growth of bacterial shells might be a consequence of the
synthesis machinery or the structure of the cell wall. However this model,
radius conservation needs to be mediated through local properties.

The trials in deterministic growth indicate that elongation of the rod-
shaped bacterial shell is achievable in the finite element based model with
minimal radius increase, provided that local properties can discriminate be-
tween
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Growth reaction rates Growth direction

I. λ0 + λ1εmin − λ2εmax εmin

II. λ0 + λ1Kmin εmin

III. λ0 + λ1Kmin Kmin

Table 3.3.1: Strains vs. curvatures for directional and positional sensing
Parameters λ0 = 1, λ1, λ2 = 5 · 10−5. With minimum and maximum strain εmin,
εmax and minimum curvature Kmin. Parameters were selected to achieve constant
growth rates in the shaft and negative (set to zero) growth rates in the caps.

a) the longitudinal and the circumferential direction and
b) the shaft and the caps of the rod.

Both of these are intimately connected, because the spherical symmetry
of the caps renders any distinction between longitudinal and circumferential
direction meaningless.

Strain

Curvature

Figure 3.3.5: Principal strains and curvatures in caps and shaft.
Strains and curvatures are symmetric in the caps and have no preferred direction.
The minimum and maximum strain directions in the shaft point in the longitudinal
and circumferential direction, respectively. The maximum curvature is constant
throughout the cylinder. The minimum curvature in the shaft is 0.

Fig. 3.3.5 illustrates the principal strains and curvatures throughout
the cylinder. The symmetric nature of the strain and curvature in the
hemispherical caps of the rod can be exploited to suppress growth. The
asymmetry in the shaft allows a distinction between the longitudinal and
circumferential direction. In principle, both strain and curvature would
be sufficient for direction and position sensing. I tested combinations of
curvature-based and strain-based growth and evaluated them on their abil-
ity to conserve the radius of the shell. Fig. 3.3.6 shows the time evolution of
length and radius. Direction sensing via strains (Tab. 3.3.1.I, II) performed
worse than randomly incorporating material with no interaction. Using the
curvature to sense the direction (Tab. 3.3.1.III) performed slightly better
than randomly growing the sphere. Using local curvatures to differentiate
between shaft and caps performed the better than using strains.
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Growth reaction rates Growth direction

IV. −λ0 + λ1Kmin + λ2εhyd εmin

V. −λ0 + λ1Kmin + λ2εmin εmin

VI. −λ0 + λ1Kmin + λ2εhyd Kmin

VII. −λ0 + λ1Kmin + λ2εmin Kmin

Table 3.3.2: Combinations of strain- and curvature-based growth.
Parameters λ0 = λ2⟨εe⟩e − 1, λ1 = 5 · 10−5, λ2 = 5. With minimum, maximum and
hydrostatic strain εmin, εmax, εhyd and minimum curvature Kmin. Parameters were
selected to achieve negative (set to zero) rates in the caps and constant rates along
the cylinder. The role of λ0 is to suppress growth in already grown triangles.

Figure 3.3.6: Strains vs. curvatures for directional and positional sensing
a, b, Relative length and radius change with the growth setups from Tab. 3.3.1.
The pure geometrical growth based on curvature performed the best with a radius
gain of only 14% per volume doubling.

I next wondered what a combination of directed growth and strain-based
growth could look like. I anticipated an improvement in both geometric and
mechanic properties compared to growth without interaction.

I hypothesised that growth in the longitudinal direction would primarily
effect the strains in the longitudinal direction εmin. This would leave εmax in
the circumferential direction largely unchanged. I reasoned that εmin would
provide a clearer picture of the mechanical state of the shell compared to
the full hydrostatic strain εhyd.

The combination of εmin vs. Kmin for directionality and εmin vs. εhyd to
reduce stresses resulted in the four growth laws presented in Tab. 3.3.2.
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Figure 3.3.7: Combinations of strain- and curvature-based growth.
a, Resulting geometry and surface stresses from VII compared to no interaction.
b, c, Almost identical geometries for VI, VII. d, Lowest roughness value for growth
without interaction because in this case the caps were grown. e, Surface stresses
are lowest for VII, slightly better than growth without interaction.

Fig. 3.3.7 compares the performance of these growth laws. The radius
was better conserved with local minimum curvature to sense the longitudinal
direction (Tab. 3.3.2 VI, VII) compared to direction sensing via minimum
strain (Tab. 3.3.2 IV, V). All four growth laws performed better than ran-
domly incorporating material without interaction.

I found that growth law VII, where curvature was used for directional
sensing and minimum strain to reduce surface stresses, performed the best
overall and reduced surface stresses the best.

None of the growth laws were able to conserve the radius however. I
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reasoned that the radius increase emerged due to the elongation direction
not always being aligned with the longitudinal direction of the cylinder,
so that some proportion of growth would be applied in the circumferential
direction.

I next wondered whether a second growth reaction could complement the
existing longitudinal growth reaction so that the radius could be conserved.
I hypothesized that a growth reaction which would reduce material along the
circumferential direction could aid in achieving this. I used the symmetry
of curvatures to reduce the radius only in the shaft of the rod (akin to Tab.
3.3.1). I set up the growth rates as

λ = λ0 + λ1Kmin − λ2εmax (3.3.7)

with λ0 = λ2⟨εe,max⟩e − 0.04, λ1 = 10−5, λ2 = 1, growing in the direction
of maximum curvature, which points in the circumferential direction. Each
iteration results in a reduction of material of ϵ = 0.2. Parameters were
selected to suppress growth in the caps in the case of λ1 and to disable
growth in already grown triangles in the case of λ0 and λ2. εmax is the
strain in the circumferential direction, and is the equivalent to εmin for
growth law VII. The sign is reversed from VII because the reduction of
material increases strains instead of reducing them. Already grown triangles
with higher maximum strains are suppressed in reducing growth along the
circumferential direction.

To test the ability of this mechanism to work against the radius increase,
I put the mechanism to work on a previously grown rod-shaped shell with
growth law VII, which had an enlarged radius. The circumferential breaking
mechanism reduced the radius to the initial size with minimal changes to
the length. The resulting shell still had about twice the initial length but
recovered the initial diameter of the shell. This suggests that this mechanism
is able to manipulate the radius of the shell independent of the length.
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Figure 3.3.8: Radius recovery with circumferential reverse growth
a Geometry and surface stresses after applying the circumferential material reduc-
ing growth. b, c The growth reaction resulted in a radius recovered to the initial
state while maintaining the increased length. d, The mechanism also slightly in-
creased surface roughness. e, Peak surface stresses increased strongly.

I hypothesized that a combination of the circumferential growth mech-
anism and the previously employed growth law VII could elongate the cell
with minimal changes to the radius. The circumferential growth mechanism
corrects mistakes in the elongation mechanism that increase the radius of the
shell. Both mechanisms operate in equilibrium, keeping the radius constant.
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Figure 3.3.9: Radius preservation in rod-shaped bacteria
a Geometry and surface stresses after applying a combination of the circumferential
growth mechanism and the growth law VII. b, c The growth reaction resulted in an
elongation with minimal changes to the diameter. d, The mechanism also slightly
increased surface roughness. e, Peak surface stresses increased significantly.

I iteratively adjusted the ratio between the elongation reaction rates and
the circumferential reaction rates to reach the parameters shown under Eq.
3.3.7. I was able to achieve radius conservation in rod-shaped bacteria with
this combination of growth laws. Fig. 3.3.9 shows the elongated bacterial
shell compared to the initial state of the shell. More work is needed to
understand how the increase in surface stresses could be avoided.

3.4 Conclusion

In this chapter I showed that the principles in the spring-based growth sim-
ulation can be applied to a simulation based on the finite element method.
I demonstrated the ability of a strain-based growth mechanism to act as a
negative feedback and incorporate material homogeneously. I also demon-
strated that a combination of strain- and curvature-based growth is needed
for rod-shaped shells in this model.
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Chapter 4

Summary and Outlook

This thesis aimed to investigate growth of bacterial shells based on mechan-
ical and geometrical cues. I developed the simulation framework presented
in this thesis for the purpose of modeling growth of the shell as a stochastic
process.

The initial physical model of the bacterial shell is based on the idea
that a network of springs maps to an isotropic linear elastic material with a
given thickness and Young’s modulus. Local growth is introduced through
increasing the rest lengths of the springs. I use an implementation of the
Gillespie algorithm to select springs to grow. Growth reaction rates are
based on local strains and curvatures.

Investigating the behavior of the simulated bacterial shell under high
pressures revealed hyperelastic behavior. This can be avoided with typi-
cal shell properties for Gram-negative shells at low pressures. Simulating
the growth of a spherical bacterial shell without any local property interac-
tion resulted in visible roughness emerging on the surface. A strain-based
growth law by contrast resulted in a smooth surface and consistently spheri-
cal shape. The same roughness emerged on a rod-shaped shell grown without
local interactions. The strain-based growth law produced a smooth surface
for the rod-shaped shell as well, however in addition to the elongation, an
increase in radius was observed. This prompted me to investigate directional
growth. My results indicate that for directional growth, preferred directions
in the underlying spring mesh of the surface determine elongation and radius
increase during growth. It also breaks the mapping to an isotropic linear
elastic material, as triangle shapes in the spring mesh deviate from being
equilateral. These shortcomings of the spring-based model prompted me
to develop a second physical model of the shell based on the finite element
method.

The finite element based model builds on the existing simulation frame-
work but avoids the shortcomings of the spring-based model. COMSOL
Multiphysics provides the interface for finding the geometry of the pressur-
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ized shell. A major challenge was the introduction of local growth into the
finite elements framework. This is achieved through the concept of initial
strains in COMSOL.

Simulating deformations under the turgor pressures confirmed the linear
behavior in the finite element based model over a wide range of pressures.
I repeated the previously conducted growth simulation experiments in this
model. Growth of a spherical shell without local property interaction re-
sulted in high surface stresses, which would compromise the mechanical
stability of the shell in the long term. Employing the strain-based growth
law on the spherical shell by contrast resulted in a more robust shell, in-
dicated by homogeneous surface stresses. This result was replicated in the
rod-shaped cell. Here, a radius increase was observed in addition to elon-
gation for strain-based growth. I achieved elongation with minimal changes
to the radius by employing a combination of strain and curvature-based
growth.

More work is needed to understand the rising surface stresses emerg-
ing with the elongation. Additionally, the simulation framework should be
applied to simulate bending and shape recovery of rod-shape bacteria as pre-
sented in [24]. The simulation framework should also be applied to model
the growth of Gram-positive bacteria, which have a thicker cell wall and can
withstand higher pressures, to see if the results from Gram-negative bacteria
can be replicated in Gram-positive bacteria.
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Appendix A

Structure of the simulation
package

Different functionalities of the simulation package are compartmentalized
into modules, listed in table A.0.1.

The shell module maps the state of the shell onto three classes. The
Graph class contains the properties related to the connectivity of the trian-
gulation mesh. It is instantiated with a list of triangles, where each triangle
is an array of three vertex indeces. This fully defines the mesh graph and
allows us to compute other properties of the graph. If we give each vertex
of the triangulation graph a 3D coordinate, then we have fully defined the
geometry of the shell. We use the graph object and the vertex coordinates
to compute other geometrical properties such as triangle surface areas, vol-
umes, and normal vectors on the surface. This information is collected in the
Geometry class, which contains a reference to its underlying graph object.
The mechanics of the shell are modeled in the Physics class. It contains
surface properties and the pressure. The Physics class is a base class for
the SpringModel and FiniteElementsModel subclasses, which implement
the respective physical models.

The energy function E(r⃗) and energy gradient function ∇r⃗E(r⃗), as well
as geometric and mesh graph computations itself are not implemented as
class methods. They are implemented in C++, which improves the execu-
tion time of the program significantly (See Appendix B).

The load_meshes module provides an interface to generate and load
initial meshes for spherical, spherocylindrical and torus geometries.

The energy_minimization module contains an interface to a conjugate
gradient algorithm in the SciPy library. We use this interface to minimize
the spring based model energy (eq. 2.1.1). The interface class implements
methods for initial pressurization and minimization after a growth step. The
initial_pressurization method iteratively raises the pressure in small
steps until the target pressure is reached. This approach leads to more
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Figure A.0.1: Class relationships in the simulation package.
Properties of the shell are compartementalized into Graph, Geometry and Physics
objects. The Geometry class is the base class for the Sphere and Spherocylinder sub
classes. Curvatures are computed from the Geometry. The FiniteElementsModel
and SpringModel classes are subclasses of the Physics class. The EnergyMinimi-
sation class is used to compute the minimum configuration of the SpringModel.
It interacts with the conjugate gradient function in SciPy and the C++ extension
module. Stresses in the context of the SpringModel are computed with the Stresses
class. The COMSOLInterface computes the pressurized configuration of the Fini-
teElementsModel and connects through the MPh extension with JPype and Java
with the COMSOL server.
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load_meshes Load and generate meshes for spherical, sphero-
cylindrical and torus geometry meshes.

geometry Contains current geometric and mesh graph re-
lated properties of the shell.

shell Contains current physical state of the shell.

cython_extension Custom C extension written in Cython. Com-
pute graph, geometric and physical attributes of
the shell in C++.

energy_minimization Find energy minimizing vertex coordinates. Im-
plements an interface to the SciPy conjugate
gradient function.

stresses Compute stresses and strains in the surface for
the spring based model (implemented by Cesar
Lopez Pastrana).

comsol_interface Compute deformations with the finite element
method using the COMSOL software.

curvatures Compute curvatures on the surface (imple-
mented by Julius Lehmann).

growth_mechanism Growing edges and triangles

kinetic_monte_carlo Get index of next edge to grow and time step
computed from growth reaction rates with the
Gillespie algorithm.

tensorboard_logger Log data from simulation run to tensorboard for
a live visualization of observables and geometry.

export Export data from simulation run.

visualization Plot surface properties of the shell onto a 3D
representation of the geometry.

Table A.0.1: Simulation package modules

consistent results compared with a naive implementation.
The comsol_interface module contains classes and functions to inter-

act with COMSOL for mesh generation, write geometries to file, set param-
eters and initial strains and import computation results.

Stresses in the spring based model are computed with an implementation
by César Lopez Pastrana, curvatures are computed with a module written
by Julius Lehmann.

The module growth_mechanism contains an interface to grow edges and
triangles by increasing rest lengths and undeformed triangles.

To select edges for growth and compute the time delta of a growth step,
we use a Gillespie algorithm implemented in the kinetic_monte_carlo

module.
We log observables and the shell geometry to tensorboard, which is a
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data visualisation toolkit. This allows us to monitor the geometry of the
shell and observables such as volume, roughness, radius and length during
execution.

The export module contains functionality for data export. At the end of
a simulation run, all data is saved as pandas DataFrame. The shell object
is exported as Pickle file, which can be reopened to continue the simulation
run. The pressurized geometries are exported in the .obj format, which can
be read by visualization software. The export also includes a copy of the
main python file from which the execution was started.

Putting the modules together, we can build a growth algorithm. The
structure of the simulation package and interfaces of the modules allows
the user access to physical parameters and critical functions while wrapping
complex background tasks like mesh generation, energy minimization, data
logging and data export into descriptive class methods. This allows the user
to concentrate on the task of designing growth rules. The following code
snippet is a full implementation of a random growth algorithm using the
simulation package:
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1 import shell_growth as sg

2

3 sphere = sg.getSphere(vertexCount =500, radius =200)

4 parameters = {

5 ’osmoticPressure_p ’: 1, # in atm

6 ’thickness_t ’: 2, # in nm

7 ’youngsModulus_E ’: 50, # in pN / nm

8 }

9 shell = FiniteElementsModel(sphere , parameters)

10

11 # starting comsol server on 12 cores

12 comsol = sg.ComsolInterface(shell , cores =12)

13 comsol.solve () # pressurize shell

14

15 growthMechanism = StrechTriangle(shell , growthFactor =0.2)

16 kinetics = KineticMonteCarlo(shell , fundamentalGrowthRate_k0 =1)

17 logger = Logger(shell , "random_growth_sphere")

18

19 numberOfGrowthSteps = 1000

20 for growthIteration in range(numberOfGrowthSteps):

21 # compute rates from local properties

22 rates = shell.geometry.vertexAreas

23 # find vertex to grow and compute time step

24 _, triangleIndex , time = kinetics.getGrowthSite(rates)

25 # grow shell locally at selected triangle

26 growthMechanism.modifyShell(triangleIndex)

27 # compute new pressurized geometry

28 comsol.solve()

29 # log data to tensorboard

30 logger.logShellData ()

31

32 logger.export () # Write data output to file

Listing A.1: Code example for a full random growth script on a sphere using the
simulation package.

One can set up a simple growth algorithm with relatively few lines of code.
In the example, a spherical shell with a radius of 100 nm, a thickness of 2 nm
and a Young’s modulus of 50 pNnm−2 is generated as a triangulated mesh
with 1000 vertices. The pressure is set to 1 atm. The shell is pressurized
with the EnergyMinimization class. The growth mechanism is selected as
growth of rest lengths of edges surrounding a vertex by 5%, kinetics and
logger objects are initialized. The shell is grown iteratively in 1000 itera-
tions. In each growth iteration, growth rates are computed from local prop-
erties. In this case, the growth rates are just proportional to the Vonoroi ar-
eas surrounding the vertices. A vertex is selected for growth by the Gillespie
algorithm implemented in KineticMonteCarlo. The minimizer computes
the new pressurized configuration after the growth mechanism has grown
the shell at the selected vertex. At the end of each iteration, observables
and the mesh geometry is logged to tensorboard and can be inspected live
while the shell is growing. After the growth loop is exited, all logged data
is exported to file.
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Figure A.0.2: Tensorboard visualization
Logging the data to tensorboard allows us to observe various parameters of the
shell and even get alive view of the geometry while the simulation is running.
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Appendix B

Improving the execution
time of the spring based
model simulation

The main operation limiting the execution time of the simulation is the
minimization step that minimizes the energy. We use the conjugate gradient
algorithm from the Python SciPy to minimize the energy, which repeatedly
calls the energy and energy gradient computation routines. These were
initially implemented with NumPy.

B.1 Moving from NumPy to Numba

Numpy (s) Numba jit (s) Speed improvement
Growth 1710 43.1 40×
Minimization 1450 37.5 39×
Gradient 766 3.75 204×
Triangle normals 381 6.57 58×
Adjacent triangles 228 3.32 69×

Table B.1.1: Speed improvement of Numba just-in-time (jit) compiled
code to a pure numpy implementation. Execution times are total cumulative
execution times for a 1000 iterations of random growth of a sphere with 500 vertices.
The largest improvement is made in the gradient computation, which was reduced
by about 200×. The growth loop runs about 40× faster overall.

Julius Lehmann suggested the Python Library Numba, which works with
NumPy arrays and compiles any Numba decorated function to machine code
at execution time [31] . I implemented the most computationally intensive
functions in Numba for a total execution speed improvement of 40×, reduc-
ing a typical growth run with a small sphere from about 28min to 43 s. (see
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table B.1.1).
For the intial tests we ignored the bending energy term because of its

low contribution to the energy and compuationally complex gradient im-
plementation. After implementing the bending energy and bending energy
gradient computations in Numba however, it became clear that the bending
gradient computation took up about 80% of the computational time even
after several optimizations.

B.2 Moving from Numba to a custom C extension

I wrote a custom C extension in Cython for the simulation that would take
care of the most computationally expensive tasks and could be called with
Python functions. This allowed us to run the simulation near C speed while
keeping a fast development time and the possibility to use Python extensions
for other parts of the program.

Figure B.2.1: Execution times using using Numba’s just in time (jit)
compiler and using a custom C++ extension written in Cython. Average
execution times over 7 runs with 1000 iterations each, measured with the Python
timeit module. The execution time in the Numba implementation is dominated
by the bending energy gradient computation, taking 20.7ms. I was able to reduce
this time to 105 µs. The full energy and energy gradient computations are 49× and
123× faster, respectively. This results in a minimization time that is lowered by
the same order of magnitude.

Cython is an optimising static compiler for the Cython programming
language, which extends Python. It generates C++ code from Cython code
that is then compiled as Python extension module. It supports calling ex-
ternal C libraries and static type declarations, which allows for very fast
execution times [29].

I implemented all the mesh graph, geometric as well as energy and gradi-
ent computations in Cython and optimized them so that the Python exten-
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sion would run as fast as normal C code. This reduced the typical execution
time of a minimization step from 6 s to 156ms. The energy and energy gra-
dient computation times were reduced by 49× and 123×, respectively (see
Fig. B.2.1).
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